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E-mail: hi.noguchi@fz-juelich.de

Received 16 September 2005
Published 28 October 2005
Online at stacks.iop.org/JPhysCM/17/S3439

Abstract
The deformation of vesicles in flow is studied by a mesoscopic simulation
technique, which combines multi-particle collision dynamics for the solvent
with a dynamically triangulated surface model for the membrane. Shape
transitions are investigated both in simple shear flows and in cylindrical capillary
flows. We focus on reduced volumes, where the discocyte shape of fluid
vesicles is stable, and the prolate shape is metastable. In simple shear flow
at low membrane viscosity, the shear induces a transformation from discocyte
to prolate with increasing shear rate, while at high membrane viscosity, the
shear induces a transformation from prolate to discocyte, or tumbling motion
accompanied by oscillations between these two morphologies. In capillary
flow, at small flow velocities the symmetry axis of the discocyte is found not to
be oriented perpendicular to the cylinder axis. With increasing flow velocity, a
transition to a prolate shape occurs for fluid vesicles, while vesicles with shear-
elastic membranes (like red blood cells) transform into a coaxial parachute-like
shape.

1. Introduction

Vesicles are closed lipid-bilayer membranes of usually spherical topology. They show a rich
variety of morphologies depending on the lipid architecture and their environment. In thermal
equilibrium, vesicle shapes have been investigated intensively using a curvature-elastic model
and are now understood very well [1]. By comparison, the behaviour of vesicles in flow fields
is much less explored.

The dynamical behaviour of vesicles in flow is an important subject not only of fundamental
research but also in medical applications. For example, in microvessels or glass capillaries, the
apparent viscosity of blood depends on the tube diameter (Fåhraeus–Lindqvist effect) [2, 3]. In
diseases such as diabetes mellitus, red blood cells (RBCs) have reduced deformability, which
leads to an increase of the apparent blood viscosity [4].

The shapes of lipid vesicles and RBCs are determined by the competition of the mechanical
properties of the membrane, the constraints of constant volume V and constant surface area S,
and the external hydrodynamic forces. The properties of the membrane of fluid vesicles are

0953-8984/05/453439+06$30.00 © 2005 IOP Publishing Ltd Printed in the UK S3439

http://dx.doi.org/10.1088/0953-8984/17/45/032
mailto:hi.noguchi@fz-juelich.de
http://stacks.iop.org/JPhysCM/17/S3439


S3440 H Noguchi and G Gompper

determined by its curvature elasticity and two-dimensional viscosity ηmb. The cytoskeleton
of RBCs, which consists of a triangular spectrin network attached at some anchoring points
to the lipid bilayer, induces a shear elasticity of the compound membrane. The cytoplasm of
RBCs behaves as a Newtonian fluid.

In simple shear flow, two types of vesicle dynamics are well known, a steady state with
a tank-treading motion of the membrane and a finite inclination angle with the flow direction,
and an unsteady state with a tumbling motion [5]. On the other hand, RBCs are known to form
parachute shapes in microvessels and glass capillaries [2, 4]. Recently, we have studied shape
transitions in the both flows using a three-dimensional mesoscopic simulation technique [6–8].
In this paper, we briefly review the simulation method and some of the key results, and compare
the dynamical behaviours in simple shear flow and in capillary flow.

2. Methods

We employ a mesoscopic approach, which combines a particle-based hydrodynamics
model [9–11] for the solvent and a coarse-grained, dynamically triangulated surface
model [12, 13] for the membrane.

The mesoscale hydrodynamics method is known under the name of multi-particle collision
dynamics (MPCD) or stochastic rotation dynamics (SRD). We briefly explain here the
simulation technique; details of methods for simple shear and capillary flows are described
in [7] and [8], respectively. The solvent is described by Ns point-like particles of mass ms.
The algorithm of MPCD consists of alternating streaming and collision steps. In the streaming
step, the particles move ballistically. In the collision step, the particles are sorted into cubic
boxes of lattice constant a. The collision step consists of a stochastic rotation of the relative
velocities of each particle in a box around an axis, which is chosen with random orientation
for each box.

The fluid membrane is described by Nmb vertices which are connected by tethers to form
a triangular network. The vertices have excluded volume and mass mmb. Soft pairwise
potentials are employed for the tether-bond and excluded volume interactions [7]. The
average bond length is chosen to equal the lattice constant a of the collision boxes. The
shapes and fluctuations of the membrane are controlled by curvature elasticity with the energy
Hcv = (κ/2)

∫
(C1 + C2)

2 dS, where κ is the bending rigidity, and C1 and C2 are the principal
curvatures at each point of the membrane. To model the fluidity of the membrane, bonds
can be flipped between the two possible diagonals of two adjacent triangles. The membrane
viscosity ηmb is varied by the bond-flip rate. The volume V and surface area S of a vesicle
are kept constant to about 1% accuracy by the constraint potentials. The RBC membrane is
modelled as a composite network, which consists of a dynamically triangulated surface as in
the case of fluid vesicles, coupled to an additional network of harmonic springs with fixed
connectivity (no bond-flip). The same number of the bonds is used for both the fluid and the
tethered networks. We denote this model as an ‘elastic vesicle’. The results presented in this
paper are obtained for bending rigidity κ = 20kBT and shear modulus µ = 110kBT/R2

0 (so
µR2

0/κ = 5.5).
To induce a shear flow, we employ Lees–Edwards boundary conditions, which give a

linear flow profile (vx , vy, vz) = (γ̇ z, 0, 0) in the MPCD fluid. We use cylindrical capillaries
with radius Rcap = 8a for capillary flows. Periodic boundary conditions are used in the flow
(z) direction. A gravitation force is used to generate flow. The solvent interacts with the
membrane and the capillary wall with no-slip boundary conditions [7, 10].

In this paper, we focus on vesicles with the reduced volume V ∗ = V/(4π R3
0/3) = 0.59,

where R0 = √
S/4π = 5.7a is the effective vesicle radius. At this reduced volume, a biconcave
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Figure 1. Sequential snapshots of the fluid vesicle in shear flow; compare figure 2(a). (a) t/τ = 5.4
(prolate shape). (b) t/τ = 35.3 (transient shape). (c) t/τ = 57.1 (discoidal shape).

discocyte is the equilibrium shape, and a prolate ellipsoid and a stomatocyte are metastable in
the absence of flow [1, 6]. The fluids in the interior and exterior of the vesicle are taken to be
the same, in particular to have the same viscosity η0. The results are conveniently expressed in
terms of dimensionless variables: the reduced shear rate γ̇ ∗ = γ̇ τ , where τ = η0 R3

0/κ is the
longest relaxation time of the vesicle, and the relative membrane viscosity η∗

mb = ηmb/η0 R0.
The membrane viscosity is varied in simple shear flows, and kept constant at ηmb/η0 R0 = 3
in capillary flows.

3. Results and discussion

3.1. Simple shear flow

For membrane viscosity η∗
mb = 0, both discoidal and prolate vesicles exhibit tank-treading

motion at all investigated shear rates. For shear rates γ̇ ∗ � 1.4, the discocyte vesicle
transforms into a prolate, while the vesicle retains its shape for smaller shear rates. This
shape transformation can be understood from the decomposition of the simple shear flow
as a linear combination of a rotational flow and a elongational flow (where the elongational
direction forms a 45◦ angle with the flow direction). The rotational component drives the
tank-treading membrane rotation. The elongational component provides a force to overcome
the free-energy barrier between discocyte and prolate shapes at higher shear rates.

With increasing membrane viscosity η∗
mb, the inclination angle θ decreases, until a

transition from tank-treading to tumbling motion occurs at small positive θ . The qualitative
features of the simulation data are reproduced by the theory of Keller and Skalak (KS) [5] for
fluid droplets of fixed, ellipsoidal shape in shear flow.

The inclination angle θ of prolates decreases faster than that of discocytes with increasing
η∗

mb. At a large membrane viscosity of η∗
mb = 1.62, the prolate enters the tumbling phase,

while the discocyte remains in the tank-treading phase. Remarkably, for small shear rates,
the (metastable) prolate starts tumbling, but after a π or 2π rotation, transforms into a tank-
treading discocyte. This transformation is illustrated by a few snapshots in figure 1. The
time dependence of the asphericity α and the inclination angle θ are shown in figure 2(a).
Here, the asphericity α = (1/2)[(λ1 − λ2)

2 + (λ2 − λ3)
2 + (λ3 − λ1)

2]/(λ1 + λ2 + λ3)
2,

with the eigenvalues λ1, λ2, λ3 of the moment-of-inertia tensor, is a convenient measure to
distinguish oblate and prolate shapes, with α � 0.2 for the discocyte and α � 0.8 for the
prolate shape (at V ∗ = 0.59). For larger shear rates, the discocyte transforms into a prolate,
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Figure 2. Time dependence of asphericity α and inclination angle θ , for (a) γ̇ ∗ = 1.84 and
(b) γ̇ ∗ = 2.76, at η∗

mb = 1.62 and V ∗ = 0.59. The broken lines are obtained from equations (1)
and (2) with ζα = 100, A = 12, and B(α) = 1.1 − 0.17α.

but the tumbling motion continues, accompanied by shape oscillations between prolate and
discocyte; see figure 2(b). Thus, four phases are obtained.

(i) At small γ̇ ∗ and small η∗
mb, both discocyte and prolate vesicles show steady tank-treading

motion.
(ii) At large γ̇ ∗ and small η∗

mb, the discocyte transits to a tank-treading prolate.
(iii) At small γ̇ ∗ and large η∗

mb, a tumbling prolate transits to a tank-treading discocyte.
(iv) At large γ̇ ∗ and large η∗

mb, tumbling motion occurs with shape oscillations between prolate
and discocyte.

The threshold for the discocyte-to-prolate transition increases from γ̇ ∗ = 1.4 to 2.0 with
an increase in η∗

mb from 0 to 1.6.
We propose a simple stochastic phenomenological model [7] to describe the vesicle

dynamics including morphological changes,

ζαα̇ = −κ−1∂ F/∂α + Aγ̇ ∗ sin(2θ) + ζαgα(t) (1)

θ̇ = 1
2 γ̇ ∗{−1 + B(α) cos(2θ)} + gθ(t), (2)

where gα(t) and gθ(t) are Gaussian white noises, which obey the fluctuation-dissipation
theorem. The first and second terms of equation (1) are the forces due to curvature elasticity
and shear flow, respectively. The thermodynamic force ∂ F/∂α is determined by the free energy
F(α). Equation (2) is adopted from KS theory [5], where the coefficient B now depends on
the (time-dependent) asphericity α. For B > 1, a steady angle θ = 0.5 arccos(1/B) exists
and tank-treading motion occurs, while for B < 1, there is no stable angle and tumbling
motion occurs. This simple model reproduces the vesicle dynamics very well, both for the
prolate-to-discocyte transformation in figure 2(a) and the shape oscillations in figure 2(b).
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Figure 3. Snapshots of vesicles in capillary flow. Fluid vesicles with (a) discoidal and (b) prolate
shapes are shown at the mean fluid velocity vmτ/Rcap = 0.75 and 2.0, respectively. Elastic vesicles
(red blood cell model) with (c) discoidal and (d) parachute shapes are shown for vmτ/Rcap = 0.71
and 4.0, respectively. The arrows in (d) represent the velocity field of the solvent. The upper front
quarter of the vesicle in (d) is removed to allow a look into the interior; the black circles indicate
the lines where the membrane has been cut in this procedure. Thick lines indicate the walls of the
cylindrical capillary. Walls are not shown in side views.

3.2. Capillary flow

Both fluid and elastic vesicles retain their discoidal shapes in slow capillary flows. We find that
coaxial orientation with the capillary axis is unstable in slow flows. Instead, the vesicles align
the longest axis of the moment-of-inertia tensor with the flow direction; see figures 3(a) and (c).
The discoidal shape is elongated in the flow direction and its front–rear symmetry is broken,
but the biconcave dimples and the mirror symmetry with respect to the plane determined by
the two eigenvectors of the moment-of-inertia tensor with the largest eigenvalues are retained.

At larger mean fluid velocity vmτ/Rcap > 1.0, the fluid vesicle transits into a prolate
ellipsoidal shape (figure 3(b)). On the other hand, the elastic vesicle transits into a parachute
shape at vmτ/Rcap > 1.5 (figure 3(d)), because the shear elasticity prevents large shear
deformations. Both shape transitions reduce the flow resistance.



S3444 H Noguchi and G Gompper

In most previous theoretical and numerical studies [2], axisymmetric shapes which
are coaxial with the centre of the capillary were assumed and cylindrical coordinates were
employed. Our results show that this assumption is justified only for high fluid velocity.

In capillary flows, an effective shear rate can be defined as γ̇eff = 2vm/Rcap, because the
mean flow velocity vm is half of the maximum velocity in Poiseuille flow. This implies an
effective shear rate of γ̇effτ = 2.0 at the shape transitions of fluid vesicles from discocyte to
prolate. This value coincides with the shear-induced discocyte-to-prolate transition in simple
shear flow. Thus, the elongation transition is induced by the same amount of shear force in
both flow fields.

4. Conclusions

We have investigated shape transitions of vesicles in simple shear and capillary flows.
The flow fields induce discocyte-to-prolate, prolate-to-discocyte, and discocyte-to-parachute
transformations. Our model has the advantage that it can easily be adapted to a variety of other
problems of vesicle dynamics in flow, like multi-component vesicles and interactions between
vesicles or a vesicle and a capillary wall.
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